Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Clin Neurophysiol ; 41(4): 334-343, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38710040

ABSTRACT

PURPOSE: Language lateralization relies on expensive equipment and can be difficult to tolerate. We assessed if lateralized brain responses to a language task can be detected with spectral analysis of electroencephalography (EEG). METHODS: Twenty right-handed, neurotypical adults (28 ± 10 years; five males) performed a verb generation task and two control tasks (word listening and repetition). We measured changes in EEG activity elicited by tasks (the event-related spectral perturbation [ERSP]) in the theta, alpha, beta, and gamma frequency bands in two language (superior temporal and inferior frontal [ST and IF]) and one control (occipital [Occ]) region bilaterally. We tested whether language tasks elicited (1) changes in spectral power from baseline (significant ERSP) at any region or (2) asymmetric ERSPs between matched left and right regions. RESULTS: Left IF beta power (-0.37±0.53, t = -3.12, P = 0.006) and gamma power in all regions decreased during verb generation. Asymmetric ERSPs (right > left) occurred between the (1) IF regions in the beta band (right vs. left difference of 0.23±0.37, t(19) = -2.80, P = 0.0114) and (2) ST regions in the alpha band (right vs. left difference of 0.48±0.63, t(19) = -3.36, P = 0.003). No changes from baseline or hemispheric asymmetries were noted in language regions during control tasks. On the individual level, 16 (80%) participants showed decreased left IF beta power from baseline, and 16 showed ST alpha asymmetry. Eighteen participants (90%) showed one of these two findings. CONCLUSIONS: Spectral EEG analysis detects lateralized responses during language tasks in frontal and temporal regions. Spectral EEG analysis could be developed into a readily available language lateralization modality.


Subject(s)
Electroencephalography , Functional Laterality , Language , Humans , Male , Female , Adult , Functional Laterality/physiology , Electroencephalography/methods , Young Adult , Brain/physiology , Brain Waves/physiology , Brain Mapping/methods
2.
Sci Rep ; 14(1): 9045, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38641629

ABSTRACT

Transcranial magnetic stimulation paired with electroencephalography (TMS-EEG) can measure local excitability and functional connectivity. To address trial-to-trial variability, responses to multiple TMS pulses are recorded to obtain an average TMS evoked potential (TEP). Balancing adequate data acquisition to establish stable TEPs with feasible experimental duration is critical when applying TMS-EEG to clinical populations. Here we aim to investigate the minimum number of pulses (MNP) required to achieve stable TEPs in children with epilepsy. Eighteen children with Self-Limited Epilepsy with Centrotemporal Spikes, a common epilepsy arising from the motor cortices, underwent multiple 100-pulse blocks of TMS to both motor cortices over two days. TMS was applied at 120% of resting motor threshold (rMT) up to a maximum of 100% maximum stimulator output. The average of all 100 pulses was used as a "gold-standard" TEP to which we compared "candidate" TEPs obtained by averaging subsets of pulses. We defined TEP stability as the MNP needed to achieve a concordance correlation coefficient of 80% between the candidate and "gold-standard" TEP. We additionally assessed whether experimental or clinical factors affected TEP stability. Results show that stable TEPs can be derived from fewer than 100 pulses, a number typically used for designing TMS-EEG experiments. The early segment (15-80 ms) of the TEP was less stable than the later segment (80-350 ms). Global mean field amplitude derived from all channels was less stable than local TEP derived from channels overlying the stimulated site. TEP stability did not differ depending on stimulated hemisphere, block order, or antiseizure medication use, but was greater in older children. Stimulation administered with an intensity above the rMT yielded more stable local TEPs. Studies of TMS-EEG in pediatrics have been limited by the complexity of experimental set-up and time course. This study serves as a critical starting point, demonstrating the feasibility of designing efficient TMS-EEG studies that use a relatively small number of pulses to study pediatric epilepsy and potentially other pediatric groups.


Subject(s)
Epilepsy , Motor Cortex , Humans , Child , Transcranial Magnetic Stimulation/methods , Evoked Potentials , Electroencephalography/methods , Motor Cortex/physiology , Evoked Potentials, Motor/physiology
3.
Pediatr Neurol ; 152: 177-183, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295719

ABSTRACT

BACKGROUND: Sunflower syndrome is a rare photosensitive pediatric epilepsy characterized by stereotyped hand-waving in response to bright lights. These stereotyped movements with maintained awareness can be mistaken for a movement disorder. This study assessed neurology providers' diagnostic reasoning, evaluation, and treatment of Sunflower syndrome. METHODS: A 32-question anonymized electronic survey, including a clinical vignette and video of hand-waving in sunlight, was distributed to child neurology providers to assess (1) initial diagnosis and evaluation based on clinical information, (2) updated diagnosis and management after electroencephalography (EEG), and (3) prior experience with Sunflower syndrome. RESULTS: Among 277 viewed surveys, 211 respondents provided information about initial diagnosis and evaluation, 200 about updated diagnosis, 191 about management, and 189 about prior clinical experience. Most providers (135, 64%) suspected seizure, whereas fewer suspected movement disorders (29, 14%) or were unsure of the diagnosis (37, 22%). EEG was recommended by 180 (85%). After EEG, 189 (95%) diagnosed epilepsy, 111 of whom specifically diagnosed Sunflower syndrome. The majority (149, 78%) recommended antiseizure medications (ASMs) and sun avoidance (181, 95%). Only 103 (55%) had managed Sunflower syndrome. Epileptologists and those with prior clinical experience were more likely to suspect a seizure, order an EEG, and offer ASMs than those without prior experience. CONCLUSIONS: Although many providers had not managed Sunflower syndrome, the majority recognized this presentation as concerning for epilepsy. Epilepsy training and prior clinical experience are associated with improved recognition and appropriate treatment. Educational initiatives that increase awareness of Sunflower syndrome may improve patient care.


Subject(s)
Epilepsy, Reflex , Helianthus , Movement Disorders , Humans , Child , Seizures/diagnosis , Syndrome , Electroencephalography/methods , Surveys and Questionnaires
4.
Clin Neurophysiol ; 144: 123-134, 2022 12.
Article in English | MEDLINE | ID: mdl-36307364

ABSTRACT

OBJECTIVE: To understand the impact of interictal spikes on brain connectivity in patients with Self-Limited Epilepsy with Centrotemporal Spikes (SeLECTS). METHODS: Electroencephalograms from 56 consecutive SeLECTS patients were segmented into periods with and without spikes. Connectivity between electrodes was calculated using the weighted phase lag index. To determine if there are chronic alterations in connectivity in SeLECTS, we compared spike-free connectivity to connectivity in 65 matched controls. To understand the acute impact of spikes, we compared connectivity immediately before, during, and after spikes versus baseline, spike-free connectivity. We explored whether behavioral state, spike laterality, or antiseizure medications affected connectivity. RESULTS: Children with SeLECTS had markedly higher connectivity than controls during sleep but not wakefulness, with greatest difference in the right hemisphere. During spikes, connectivity increased globally; before and after spikes, left frontal and bicentral connectivity increased. Right hemisphere connectivity increased more during right-sided than left-sided spikes; left hemisphere connectivity was equally affected by right and left spikes. CONCLUSIONS: SeLECTS patient have persistent increased connectivity during sleep; connectivity is further elevated during the spike and perispike periods. SIGNIFICANCE: Testing whether increased connectivity impacts cognition or seizure susceptibility in SeLECTS and more severe epilepsies could help determine if spikes should be treated.


Subject(s)
Epilepsy, Rolandic , Child , Humans , Electroencephalography , Seizures , Brain , Functional Laterality/physiology
5.
Neurology ; 99(22): e2494-e2503, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36038267

ABSTRACT

BACKGROUND AND OBJECTIVES: Standard therapies (adrenocorticotropic hormone [ACTH], oral steroids, or vigabatrin) fail to control infantile spasms in almost half of children. Early identification of nonresponders could enable rapid initiation of sequential therapy. We aimed to determine the time to clinical remission after appropriate infantile spasms treatment initiation and identify predictors of the time to infantile spasms treatment response. METHODS: The National Infantile Spasms Consortium prospectively followed children aged 2-24 months with new-onset infantile spasms at 23 US centers (2012-2018). We included children treated with standard therapy (ACTH, oral steroids, or vigabatrin). Sustained treatment response was defined as having the last clinically recognized infantile spasms on or before treatment day 14, absence of hypsarrhythmia on EEG 2-4 weeks after treatment, and persistence of remission to day 30. We analyzed the time to treatment response and assessed clinical characteristics to predict sustained treatment response. RESULTS: Among 395 infants, clinical infantile spasms remission occurred in 43% (n = 171) within the first 2 weeks of treatment, of which 81% (138/171) responded within the first week of treatment. There was no difference in the median time to response across standard therapies (ACTH: median 4 days, interquartile range [IQR] 3-7; oral steroids: median 3 days, IQR 2-5; vigabatrin: median 3 days, IQR 1-6). Individuals without hypsarrhythmia on the pretreatment EEG (i.e., abnormal but not hypsarrhythmia) were more likely to have early treatment response than infants with hypsarrhythmia at infantile spasms onset (hazard ratio 2.23, 95% CI 1.39-3.57). No other clinical factors predicted early responders to therapy. DISCUSSION: Remission after first infantile spasms treatment can be identified by treatment day 7 in most children. Given the importance of early and effective treatment, these data suggest that children who do not respond to standard infantile spasms therapy within 1 week should be reassessed immediately for additional standard treatment. This approach could optimize outcomes by facilitating early sequential therapy for children with infantile spasms.


Subject(s)
Spasms, Infantile , Humans , Infant , Adrenocorticotropic Hormone/therapeutic use , Anticonvulsants/therapeutic use , Cognition , Electroencephalography , Spasms, Infantile/drug therapy , Treatment Outcome , Vigabatrin/therapeutic use
6.
Ann Neurol ; 92(1): 32-44, 2022 07.
Article in English | MEDLINE | ID: mdl-35388521

ABSTRACT

OBJECTIVE: The aim of this study was to determine whether selection of treatment for children with infantile spasms (IS) varies by race/ethnicity. METHODS: The prospective US National Infantile Spasms Consortium database includes children with IS treated from 2012 to 2018. We examined the relationship between race/ethnicity and receipt of standard IS therapy (prednisolone, adrenocorticotropic hormone, vigabatrin), adjusting for demographic and clinical variables using logistic regression. Our primary outcome was treatment course, which considered therapy prescribed for the first and, when needed, the second IS treatment together. RESULTS: Of 555 children, 324 (58%) were non-Hispanic white, 55 (10%) non-Hispanic Black, 24 (4%) non-Hispanic Asian, 80 (14%) Hispanic, and 72 (13%) other/unknown. Most (398, 72%) received a standard treatment course. Insurance type, geographic location, history of prematurity, prior seizures, developmental delay or regression, abnormal head circumference, hypsarrhythmia, and IS etiologies were associated with standard therapy. In adjusted models, non-Hispanic Black children had lower odds of receiving a standard treatment course compared with non-Hispanic white children (odds ratio [OR], 0.42; 95% confidence interval [CI], 0.20-0.89; p = 0.02). Adjusted models also showed that children with public (vs. private) insurance had lower odds of receiving standard therapy for treatment 1 (OR, 0.42; CI, 0.21-0.84; p = 0.01). INTERPRETATION: Non-Hispanic Black children were more often treated with non-standard IS therapies than non-Hispanic white children. Likewise, children with public (vs. private) insurance were less likely to receive standard therapies. Investigating drivers of inequities, and understanding the impact of racism on treatment decisions, are critical next steps to improve care for patients with IS. ANN NEUROL 2022;92:32-44.


Subject(s)
Spasms, Infantile , Black People , Child , Hispanic or Latino , Humans , Prospective Studies , Spasms, Infantile/drug therapy , Vigabatrin/therapeutic use
7.
BMC Neurol ; 21(1): 280, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34271872

ABSTRACT

BACKGROUND: Motor impairment after stroke is due not only to direct tissue loss but also to disrupted connectivity within the motor network. Mixed results from studies attempting to enhance motor recovery with Transcranial Magnetic Stimulation (TMS) highlight the need for a better understanding of both connectivity after stroke and the impact of TMS on this connectivity. This study used TMS-EEG to map the causal information flow in the motor network of healthy adult subjects and define how stroke alters these circuits. METHODS: Fourteen stroke patients and 12 controls received TMS to two sites (bilateral primary motor cortices) during two motor tasks (paretic/dominant hand movement vs. rest) while EEG measured the cortical response to TMS pulses. TMS-EEG based connectivity measurements were derived for each hemisphere and the change in connectivity (ΔC) between the two motor tasks was calculated. We analyzed if ΔC for each hemisphere differed between the stroke and control groups or across TMS sites, and whether ΔC correlated with arm function in stroke patients. RESULTS: Right hand movement increased connectivity in the left compared to the right hemisphere in controls, while hand movement did not significantly change connectivity in either hemisphere in stroke. Stroke patients with the largest increase in healthy hemisphere connectivity during paretic hand movement had the best arm function. CONCLUSIONS: TMS-EEG measurements are sensitive to movement-induced changes in brain connectivity. These measurements may characterize clinically meaningful changes in circuit dynamics after stroke, thus providing specific targets for trials of TMS in post-stroke rehabilitation.


Subject(s)
Brain Mapping , Electroencephalography , Stroke/physiopathology , Transcranial Magnetic Stimulation , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Male , Middle Aged , Motor Cortex/physiopathology , Paresis/physiopathology
8.
J Pediatr ; 232: 220-228.e3, 2021 05.
Article in English | MEDLINE | ID: mdl-33484700

ABSTRACT

OBJECTIVES: To determine how continuous spike and wave during slow wave sleep (CSWS) is currently managed and to compare the effectiveness of current treatment strategies using a database from 11 pediatric epilepsy centers in the US. STUDY DESIGN: This retrospective study gathered information on baseline clinical characteristics, CSWS etiology, and treatment(s) in consecutive patients seen between 2014 and 2016 at 11 epilepsy referral centers. Treatments were categorized as benzodiazepines, steroids, other antiseizure medications (ASMs), or other therapies. Two measures of treatment response (clinical improvement as noted by the treating physician; and electroencephalography improvement) were compared across therapies, controlling for baseline variables. RESULTS: Eighty-one children underwent 153 treatment trials during the study period (68 trials of benzodiazepines, 25 of steroids, 45 of ASMs, 14 of other therapies). Children most frequently received benzodiazepines (62%) or ASMs (27%) as first line therapy. Treatment choice did not differ based on baseline clinical variables, nor did these variables correlate with outcome. After adjusting for baseline variables, children had a greater odds of clinical improvement with benzodiazepines (OR 3.32, 95%CI 1.57-7.04, P = .002) or steroids (OR 4.04, 95%CI 1.41-11.59, P = .01) than with ASMs and a greater odds of electroencephalography improvement after steroids (OR 3.36, 95% CI 1.09-10.33, P = .03) than after ASMs. CONCLUSIONS: Benzodiazepines and ASMs are the most frequent initial therapy prescribed for CSWS in the US. Our data suggests that ASMs are inferior to benzodiazepines and steroids and support earlier use of these therapies. Multicenter prospective studies that rigorously assess treatment protocols and outcomes are needed.


Subject(s)
Anticonvulsants/therapeutic use , Benzodiazepines/therapeutic use , Epileptic Syndromes/drug therapy , Practice Patterns, Physicians'/statistics & numerical data , Sleep, Slow-Wave/drug effects , Steroids/therapeutic use , Adolescent , Anticonvulsants/pharmacology , Benzodiazepines/pharmacology , Child , Child, Preschool , Drug Administration Schedule , Electroencephalography , Epileptic Syndromes/diagnosis , Epileptic Syndromes/physiopathology , Female , Follow-Up Studies , Humans , Male , Retrospective Studies , Steroids/pharmacology , Treatment Outcome , United States
9.
J Child Neurol ; 35(12): 828-834, 2020 10.
Article in English | MEDLINE | ID: mdl-32576057

ABSTRACT

Circumstances of the COVID-19 pandemic have mandated a change to standard management of infantile spasms. On April 6, 2020, the Child Neurology Society issued an online statement of immediate recommendations to streamline diagnosis and treatment of infantile spasms with utilization of telemedicine, outpatient studies, and selection of first-line oral therapies as initial treatment. The rationale for the recommendations and specific guidance including follow-up assessment are provided in this manuscript. These recommendations are indicated as enduring if intended to outlast the pandemic, and limited if intended only for the pandemic health care crisis but may be applicable to future disruptions of health care delivery.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Spasms, Infantile , Anticonvulsants/therapeutic use , Betacoronavirus , COVID-19 , Child , Coronavirus Infections/epidemiology , Electroencephalography , Humans , Infant , Pneumonia, Viral/epidemiology , Practice Guidelines as Topic , SARS-CoV-2 , Spasms, Infantile/diagnosis , Spasms, Infantile/therapy
10.
J Child Neurol ; 35(10): 662-666, 2020 09.
Article in English | MEDLINE | ID: mdl-32524876

ABSTRACT

Lacosamide, an antiepileptic drug prescribed for children with refractory focal epilepsy, is generally well tolerated, with dose-dependent adverse effects. We describe 4 children who developed a movement disorder in conjunction with the initiation and/or uptitration of lacosamide. Three patients developed dyskinesias involving the face or upper extremity whereas the fourth had substantial worsening of chronic facial tics. The patients all had histories suggestive of opercular dysfunction: 3 had seizure semiologies including hypersalivation, facial and upper extremity clonus while the fourth underwent resection of polymicrogyria involving the opercula. Onset, severity, and resolution of dyskinesias correlated with lacosamide dosing. These cases suggest that pediatric patients with dysfunction of the opercular cortex are at increased risk for developing drug-induced dyskinesias on high-dose lacosamide therapy. Practitioners should be aware of this potential side effect and consider weaning lacosamide or video electroencephalography (EEG) for differential diagnosis, particularly in pediatric patients with underlying opercular dysfunction.


Subject(s)
Anticonvulsants/adverse effects , Drug Resistant Epilepsy/drug therapy , Dyskinesia, Drug-Induced/etiology , Lacosamide/adverse effects , Anticonvulsants/therapeutic use , Arm/physiopathology , Child , Child, Preschool , Face/physiopathology , Female , Humans , Infant , Lacosamide/therapeutic use , Male , Treatment Outcome
12.
13.
J Clin Neurophysiol ; 37(2): 170-180, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32142025

ABSTRACT

PURPOSE: Children with benign epilepsy with centrotemporal spikes have rare seizures emerging from the motor cortex, which they outgrow in adolescence, and additionally may have language deficits of unclear etiology. We piloted the use of transcranial magnetic stimulation paired with EMG and EEG (TMS-EMG, TMS-EEG) to test the hypotheses that net cortical excitability decreases with age and that use-dependent plasticity predicts learning. METHODS: We assessed language and motor learning in 14 right-handed children with benign epilepsy with centrotemporal spikes. We quantified two TMS metrics of left motor cortex excitability: the resting motor threshold (measure of neuronal membrane excitability) and amplitude of the N100-evoked potential (an EEG measure of GABAergic tone). To test plasticity, we applied 1 Hz repetitive TMS to the motor cortex to induce long-term depression-like changes in EMG- and EEG-evoked potentials. RESULTS: Children with benign epilepsy with centrotemporal spikes tolerate TMS; no seizures were provoked. Resting motor threshold decreases with age but is elevated above maximal stimulator output for half the group. N100 amplitude decreases with age after controlling for resting motor threshold. Motor cortex plasticity correlates significantly with language learning and at a trend level with motor learning. CONCLUSIONS: Transcranial magnetic stimulation is safe and feasible for children with benign epilepsy with centrotemporal spikes, and TMS-EEG provides more reliable outcome measures than TMS-EMG in this group because many children have unmeasurably high resting motor thresholds. Net cortical excitability decreases with age, and motor cortex plasticity predicts not only motor learning but also language learning, suggesting a mechanism by which motor cortex seizures may interact with language development.


Subject(s)
Cortical Excitability/physiology , Epilepsy, Rolandic/physiopathology , Epilepsy, Rolandic/therapy , Learning/physiology , Neuronal Plasticity/physiology , Transcranial Magnetic Stimulation/methods , Child , Child, Preschool , Cognition/physiology , Electroencephalography/methods , Electromyography/methods , Female , Humans , Male , Pilot Projects
16.
Cereb Cortex ; 28(10): 3665-3672, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29939236

ABSTRACT

INTRODUCTION: Neurological manifestations in Tuberous Sclerosis Complex (TSC) are highly variable. Diffusion tensor imaging (DTI) may reflect the neurological disease burden. We analyzed the association of autism spectrum disorder (ASD), intellectual disability (ID) and epilepsy with callosal DTI metrics in subjects with and without TSC. METHODS: 186 children underwent 3T MRI DTI: 51 with TSC (19 with concurrent ASD), 46 with non-syndromic ASD and 89 healthy controls (HC). Subgroups were based on presence of TSC, ASD, ID, and epilepsy. Density-weighted DTI metrics obtained from tractography of the corpus callosum were fitted using a 2-parameter growth model. We estimated distributions using bootstrapping and calculated half-life and asymptote of the fitted curves. RESULTS: TSC was associated with a lower callosal fractional anisotropy (FA) than ASD, and ASD with a lower FA than HC. ID, epilepsy and ASD diagnosis were each associated with lower FA values, demonstrating additive effects. In TSC, the largest change in FA was related to a comorbid diagnosis of ASD. Mean diffusivity (MD) showed an inverse relationship to FA. Some subgroups were too small for reliable data fitting. CONCLUSIONS: Using a cross-disorder approach, this study demonstrates cumulative abnormality of callosal white matter diffusion with increasing neurological comorbidity.


Subject(s)
Autism Spectrum Disorder/complications , Autism Spectrum Disorder/diagnostic imaging , Corpus Callosum/diagnostic imaging , Tuberous Sclerosis/complications , Tuberous Sclerosis/diagnostic imaging , White Matter/diagnostic imaging , Adolescent , Adult , Anisotropy , Child , Child, Preschool , Diffusion Tensor Imaging , Epilepsy/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted , Infant , Intellectual Disability/diagnostic imaging , Male , Young Adult
17.
Epilepsy Res ; 142: 58-63, 2018 05.
Article in English | MEDLINE | ID: mdl-29555355

ABSTRACT

BACKGROUND: Sunflower Syndrome describes reflex seizures - typically eyelid myoclonia with or without absence seizures - triggered when patients wave their hands in front of the sun. While valproate has been recognized as the best treatment for photosensitive epilepsy, many clinicians now initially treat with newer medications; the efficacy of these medications in Sunflower Syndrome has not been investigated. We reviewed all cases of Sunflower Syndrome seen at our institution over 15 years to describe the clinical course, electroencephalogram (EEG), and treatment response in these patients. METHODS: Search of the electronic medical record and EEG database, as well as survey of epilepsy providers at our institution, yielded 13 cases of Sunflower Syndrome between 2002 and 2017. We reviewed the records and EEG tracings. RESULTS: Patients were mostly young females, with an average age of onset of 5.5 years. Seven had intellectual, attentional or academic problems. Self-induced seizures were predominantly eyelid myoclonia ±â€¯absences and 6 subjects also had spontaneous seizures. EEG demonstrated a normal background with 3-4 Hz spike waves ±â€¯polyspike waves as well as a photoparoxysmal response. Based on both clinical and EEG response, valproate was the most effective treatment for reducing or eliminating seizures and improving the EEG; 9 patients tried valproate and 66% had significant improvement or resolution of seizures. None of the nine patients on levetiracetam or seven patients on lamotrigine monotherapy achieved seizure control, though three patients had improvement with polypharmacy. CONCLUSIONS: Valproate monotherapy continues to be the most effective treatment for Sunflower Syndrome and should be considered early. For patients who cannot tolerate valproate, higher doses of lamotrigine or polypharmacy should be considered. Levetiracetam monotherapy, even at high doses, is unlikely to be effective.


Subject(s)
Anticonvulsants/therapeutic use , Electroencephalography/methods , Epilepsy, Reflex/physiopathology , Epilepsy, Reflex/therapy , Adolescent , Child , Cost of Illness , Electroencephalography/statistics & numerical data , Electronic Health Records/statistics & numerical data , Female , Humans , Male , Retrospective Studies , Treatment Outcome
18.
Seizure ; 56: 50-52, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29448117

ABSTRACT

Primary familial brain calcification (PFBC), otherwise known as Fahr's disease, is a rare autosomal dominant condition with manifestations of movement disorders, neuropsychiatric symptoms, and epilepsy in a minority of PFBC patients. The clinical presentation of epilepsy in PFBC has not been described in detail. We present a paediatric patient with PFBC and refractory focal epilepsy based on seizure semiology and ictal EEG, but with generalized interictal EEG abnormalities. The patient was found to have a SLC20A2 mutation known to be pathogenic in PFBC, as well as a variant of unknown significance in SCN2A. This case demonstrates that the ictal EEG is important for accurately classifying epilepsy in affected subjects with PFBC. Further, epilepsy in PFBC may be a polygenic disorder.


Subject(s)
Brain/pathology , Calcinosis/complications , Drug Resistant Epilepsy/complications , Brain/diagnostic imaging , Calcinosis/diagnostic imaging , Child, Preschool , Drug Resistant Epilepsy/diagnostic imaging , Electroencephalography , Humans , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...